Distributed Multi-Scale Data Processing for Sensor Networks
نویسنده
چکیده
Distributed Multi-Scale Data Processing for Sensor Networks by Raymond S. Wagner Wireless sensor networks provide a challenging application area for signal processing. Sensor networks are collections of small, battery-operated devices called sensor nodes, each of which is capable of sensing data, processing data with an onboard microprocessor, and sharing data with other nodes by forming a wireless, multi-hop network. Since communication power consumption in nodes typically dominates over sensing and processing power consumption by orders of magnitude, it is often more efficient to pose questions on measured data in a distributed fashion within the network than it is to collect data at a single location for centralized processing. Under this model, nodes collaborate with each other in some neighborhood using localized communications and in-network processing to compute answers to users’ questions, which are then sent over more costly, long-haul links to a data sink. In this thesis, our contributions to distributed data processing in sensor networks fall into two main categories. First, we develop a new class of multi-scale distributed data processing algorithms based on distributed wavelet analysis. Specifically, we formulate and analyze a novel, distributed wavelet transform (WT) suited to the irregular-grid data samples expected in real-world sensor network deployments. The WT replaces node measurements with a set of wavelet coefficients that are more sparse than the original data and enable subsequent distributed processing. We then develop and analyze protocols for wavelet-based processing, including distributed, lossy compression and distributed de-noising of node measurements. Our second main contribution is the development of a network application programming interface (API) for distributed data processing in sensor networks. Guided by our experience in implementing the distributed WT in a real sensor network, we realize that a fundamental set of communication patterns underlie the bulk of distributed algorithms. Expanding our scope past the distributed WT, we survey all such algorithms proposed in the proceedings of the Information Processing in Sensor Networks (IPSN) conference to extract the communication patterns. Using the survey results, we design a network API composed of four main families of calls. Its implementation, in ongoing work, will enable easy and invaluable prototyping of distributed processing algorithms in real sensor network hardware.
منابع مشابه
A multi-hop PSO based localization algorithm for wireless sensor networks
A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...
متن کاملMulti-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks
The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image ...
متن کاملA Priority-based Routing Algorithm for Underwater Wireless Sensor Networks (UWSNs)
Advances in low-power electronics design and wireless communication have enabled the development of low cost, low power micro-sensor nodes. These sensor nodes are capable of sensing, processing and forwarding which have many applications such as underwater networks. In underwater wireless sensor networks (UWSNs) applications, sensors which are placed in underwater environments and predicted ena...
متن کاملOutlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملDistributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کامل